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Globally, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has infected more than 59 million people and killed more
than 1.39 million. Designing and monitoring interventions to slow
and stop the spread of the virus require knowledge of how many
people have been and are currently infected, where they live,
and how they interact. The first step is an accurate assessment
of the population prevalence of past infections. There are very
few population-representative prevalence studies of SARS-CoV-2
infections, and only two states in the United States—Indiana and
Connecticut—have reported probability-based sample surveys that
characterize statewide prevalence of SARS-CoV-2. One of the diffi-
culties is the fact that tests to detect and characterize SARS-CoV-2
coronavirus antibodies are new, are not well characterized, and
generally function poorly. During July 2020, a survey representing
all adults in the state of Ohio in the United States collected serum
samples and information on protective behavior related to SARS-
CoV-2 and coronavirus disease 2019 (COVID-19). Several features
of the survey make it difficult to estimate past prevalence: 1) a
low response rate; 2) a very low number of positive cases; and 3)
the fact that multiple poor-quality serological tests were used to
detect SARS-CoV-2 antibodies. We describe a Bayesian approach
for analyzing the biomarker data that simultaneously addresses
these challenges and characterizes the potential effect of selec-
tive response. The model does not require survey sample weights;
accounts for multiple imperfect antibody test results; and charac-
terizes uncertainty related to the sample survey and the multiple
imperfect, potentially correlated tests.

coronavirus | COVID-19 | imperfect diagnostic tests | SARS-CoV-2 |
seroprevalence survey

S lowing or stopping the spread of a new virus for which a
vaccine does not exist starts with two key pieces of informa-

tion. One is what fraction of the population has been infected
and is thereby potentially less susceptible or even immune to
future infection; two is what fraction of the population is cur-
rently infected and potentially infectious to others. Together
with a basic understanding of the infection process, this infor-
mation roughly characterizes the potential for the epidemic to
grow. However, in the early months of the severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there
was great uncertainty about the number of people who had been
infected due to challenges with adequate testing and asymp-
tomatic and mild cases. Due to this uncertainty, debate occurred
over whether the past infection prevalence was far higher than
recorded cases suggested, even potentially approaching herd
immunity thresholds, believed to be 70 to 85%. A population-
based estimate of past infection prevalence was of critical impor-
tance to public health officials and policy makers who have the

responsibility to manage the epidemic, make policy, and protect
the public.

As of this writing (late November 2020), the global SARS-
CoV-2 pandemic has infected more than 59 million people, and
coronavirus disease 2019 has killed more than 1.39 million (1).
Basic epidemiological information to describe the pandemic is
scarce because the virus is new and the pandemic exploded
rapidly. In its place is a wide variety of indicators based on con-
venient, mostly nonrepresentative, or indirectly related data—
counts of all-cause deaths (e.g., refs. 2–4), facility-based testing
results for symptomatic patients, nonrepresentative samples,
and in many situations, results from inadequately character-
ized tests that perform poorly (5). Franceschi et al. (6) identify
37 SARS-CoV-2 prevalence studies from 19 countries. Most
present results are from nonrepresentative, otherwise special,
or very small study populations. Just 14 represent large-enough
populations to be of policy interest—national or state level—and
use a probability-based sample from a credible sampling frame to
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produce results that could represent the population of interest—
Asia: one (7); Europe: seven (8–14); North America: two
(15, 16); and South America: four (17–20). The two in North
America are from the state of Indiana (15) and the state of
Connecticut (16) in the United States.

Conducting population-representative biomarker surveys is
difficult—particularly in the United States. Good sampling
frames exist in a variety of forms (tax rolls, telephone num-
bers, etc.), but recruiting willing respondents is exceptionally
difficult and likely affected by selection relative to the outcome
of interest. Both of the studies in the United States had low
response rates for the full interview with valid test results for
SARS-CoV-2—Indiana: 23.4% and Connecticut: 7.8%. Further
complicating analysis, there were few positive tests among those
who did respond—Indiana: 47/3, 658=1.3% for the PCR test of
current infection and 38/3, 658=1.0% for antibody test of ever
infected and Connecticut: 23/567=4.1% for the antibody test
of ever infected. Both studies described concern that the nonre-
sponding participants were likely to be at higher risk of infection
with SARS-CoV-2. Finally, like all SARS-CoV-2 immunology
investigations to date, both studies struggled with poor-quality
antibody tests whose unfavorable performance characteristics
were not well understood; ref. 7 has an overview of these
issues.

Statistical analysis of data like these is difficult. First, the
low response rate requires extensive recalibration of the sam-
pling weights, and in the worst case, there may be sampling
units with no respondents at all. Second, the very small number
of positive cases pushes the asymptotic (large-sample) assump-
tions of frequentist methods to their limits and can break them.
Third, the imperfect and poorly characterized antibody tests
potentially add a lot of uncertainty that must be reflected in
the results, particularly in low-prevalence settings (21). Fourth,
when results from multiple tests with different performance
characteristics are combined, the joint result must be accu-
rately described and its uncertainty propagated to the final
estimate of prevalence—importantly, including the possibility
that results from individual tests are correlated. Finally, if there
is selection on the outcome, then the effect of this must be
understood. In our review of the literature, we did not find
an existing method that addresses all of these challenges in a
unified way.

Here, we describe an analytical approach developed to pro-
duce estimates of past infection with SARS-CoV-2 using data
from a probability-based household survey representing adults
in the state of Ohio in the United States. Like the SARS-
CoV-2 prevalence studies in Indiana and Connecticut, the
Ohio survey had a low response rate, few positive cases, and
the possibility of selective response. Additionally, the Ohio
survey used multiple imperfect antibody tests for the same
antibodies, resulting in the need to quantify uncertainty in
the joint result and account for possible dependence among
results.

To overcome these challenges, we weave together two
well-established modeling frameworks into a single coherent
approach. We utilize the literature on modeling multiple imper-
fect diagnostic tests through the use of a Bayesian latent class
model (e.g., refs. 22 and 23). This enables us to combine infor-
mation across tests to infer the true latent infection status of a
participant while incorporating uncertainty about the character-
istics of the tests. We use the latent infection status to generate
model-based estimates of the population prevalence using multi-
level regression and poststratification (21, 24). These approaches
are integrated into a single Bayesian model that allows for the
full propagation of uncertainty, exact inferences, and the ability
to specify informative priors using external information. By doing
so, we produce estimates that reflect all available information
and uncertainty.

Methods
The purpose of this study is to estimate the prevalence of past SARS-CoV-
2 infections in the state of Ohio using three separate antibody tests given
to randomly selected adult participants. We know that each antibody test
is imperfect, and there is no gold standard for detecting prior SARS-CoV-2
infection. Prevalence estimates based on a single imperfect test are always
biased but particularly in the case of SARS-CoV-2 infection rates, which are
low (21). To mitigate that bias and incorporate variability due to error in
the testing results, we will take a Bayesian latent class approach for mod-
eling multiple diagnostic tests. Our approach will be based on combining a
fixed effects framework for modeling conditional dependence across mul-
tiple diagnostic tests (22, 23) with a model-based analysis using multilevel
regression and poststratification (24) to acknowledge the complex design
aspects of the survey.

Survey Design. The survey was designed to provide policy makers with a
“quick” overall snapshot of the prevalence of prior infection at the state
level. The survey sampling scheme was designed as a stratified two-stage
cluster sample. Strata were defined by eight administrative regions used by
the state. Within each region, 30 census tracts were randomly selected with
probability proportional to size (PPS) based on total population size. Then,
within a selected tract, five households were randomly selected, and one
adult (at least 18 y of age) within each household was randomly selected to
participate in the study from all eligible adults in the household using a ran-
dom number generator. Adults were eligible for the study if they were aged
18 y or older, slept in the home at least 4 d of the last 7 d, were proficient
in English or Spanish, were willing to provide blood and nasopharyngeal
swab samples, and were able to provide consent. If the selected individual
declined to participate, the team moved to the next selected household.
Thus, the planned target sample size was 1,200 participants. The study was
conducted from 9 to 28 July 2020. The Ohio Department of Health (ODH)
Institutional Review Board (IRB) reviewed and approved the research. The
Ohio State University IRB ceded review to the ODH IRB. All participants
provided written informed consent.

Each participant in the study provided biological samples, which would
be put through a series of diagnostic tests. In this paper, we will focus on
prior infection as determined by the presence of SARS-CoV-2 antibodies.
Since antibody tests for SARS-CoV-2 are new to the market and of vary-
ing quality, we processed participant samples using three different antibody
tests. Specifically, we used the Abbott Immunoglobulin G (IgG), Liaison IgG,
and Epitope Immunoglobulin M (IgM) tests.

Model. For each participant in the study, indexed by i = 1, . . . , n, let Ti =

(Ti1, Ti2, Ti3) be indicators of a positive test result of the Abbott IgG, Liai-
son IgG, and Epitope IgM, respectively. Let Di be the unobserved indicator
of whether participant i had a prior infection of SARS-CoV-2. This latent
indicator of prior infection is our primary outcome of interest. Analysis
methods for multiple diagnostic tests without a gold standard hinge on
assumptions related to conditional independence (23). We will assume that
(Ti1, Ti2) and Ti3 are independent given the true infection status. This implies
that conditional on the true presence of prior infection, we assume tests
for the same antibody are dependent and tests for different antibodies
are independent. Based on the underlying design of the tests and what
they target, we believe these assumptions are reasonable for this specific
application.

Given the assumptions stated above, we can consider this a problem with
two conditionally independent sets of tests: the two IgG tests and the IgM
test. Thus, we can decompose the joint probability as

Pr(Ti1, Ti2, Ti3|Di) = Pr(Ti1, Ti2|Di) Pr(Ti3|Di).

By doing so, each conditional probability on the right-hand side can be
estimated following a fixed effects approach (22). Since each test result is
binary, this leads to eight potential combinations of results, shown in Table
1, and suggests the following distribution:

Yi|Di ∼Multinomial(1, pi),

where Yi is an indicator of participant i’s result pattern and pi = pi(Di) is
a vector of length eight where each element is the probability of a result
pattern.

To construct the probability vector pi , we first need to define the condi-
tional probabilities within each antibody. Let Sj be the sensitivity and Cj be
the specificity of test j. Since we have two IgG tests (j = 1, 2), we allow for
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Table 1. Mapping from the three binary test results to the
multinomial response vector and corresponding probabilities

Yi Ti1 Ti2 Ti3 pi

1 1 1 1 pi1

2 1 1 0 pi2

3 1 0 1 pi3

4 0 1 1 pi4

5 1 0 0 pi5

6 0 1 0 pi6

7 0 0 1 pi7

8 0 0 0 pi8

their results to be correlated. Let R1
12 be the covariance between the results

of tests 1 and 2 given the infection status is positive and R0
12 be the covari-

ance when the infection status is negative. Then, for the joint probabilities
of the IgG test results (22), we have

Pr(Ti1 = ti1, Ti2 = ti2|Di = 1) = [1]

S
ti1
1 S

ti2
2 (1− S1)1−ti1 (1− S2)1−ti2 + (−1)ti1+ti2 R1

12

Pr(Ti1 = ti1, Ti2 = ti2|Di = 0) =

C
1−ti1
1 C

1−ti2
2 (1− C1)ti1 (1− C2)ti2 + (−1)ti1+ti2 R0

12.

Since we only have one IgM test (j = 3), we have

Pr(Ti3 = ti3|Di = di) = [2]

diS
ti3
3 (1− S3)1−ti3 + (1− di)C

1−ti3
3 (1− C3)ti3 .

We then use these conditional probabilities to construct the probabilities in
the vector pi in the multinomial distribution above. Those eight probabilities
can be calculated with the following general equation for each test result
pattern:

Pr(Ti1 = ti1, Ti2 = ti2, Ti3 = ti3|Di = di) =

Pr(ti1, ti2|di) Pr(ti3|di).

These probabilities are the individual elements of the vector pi , which
is a function of Di , S, C, R, where S = (S1, S2, S3), C = (C1, C2, C3), and R =

(R1
12, R0

12).
The latent true infection status is the primary process of interest as we

are interested in estimating the prevalence of prior SARS-CoV-2 infections.
We assume

Di|πi ∼ Bernoulli(πi),

where πi is the probability of prior infection for participant i, which will
be determined by region, strata, and census tract. Specifically, we let r[i],
s[i], and t[i] refer to the region, strata, and census tract for participant i,
respectively, and assume

logit(πi) =αr[i] + Xs[i]β
s
+ Xt[i]β

t
+ bt[i], [3]

where αr is a region-specific random intercept, Xs is a vector of stra-
tum indicators with fixed effects vector βs, Xt is a vector of census tract
covariates with fixed effects vector βt , and bt is a random effect for cen-
sus tract. In this analysis, Xs includes indicators of participant age group
and sex, and Xt is a scalar and corresponds to the log of the total cen-
sus tract population. We code the groups using sum to zero contrasts,
and the log population was standardized to have zero mean and SD

of one across the entire state. We assume αr
iid∼N(α,σ2). Since the fixed

effects are coded to sum to zero, α reflects the overall mean on the logit

scale, and αr can be interpreted as regional means. We also assume bt
iid∼

N(0, τ2), which accounts for correlation between individuals in the same
census tract.

At this point, we link the diagnostic test model to a multilevel regression
and poststratification approach (21, 24) for estimating population preva-
lence. In Eq. 3, we specified a multilevel logistic regression model for the
probability of prior infection. Since true infection was rare in our sam-
ple, we were unable to fit a saturated model. Instead, we chose to use a
hierarchical model with fixed strata effects. By doing so, we assume that
while regions may have different probabilities of infection, the relative
ordering of the strata will be the same across regions (i.e., there is no

interaction between region and strata). Effects for region and census tract
population are included to account for the characteristics of the underlying
survey design (stratification and PPS sampling), making the selection process
ignorable (25).

To obtain the population prevalence, we calculate

π=

∑
r

∑
s

∑
t πrstPrst∑

r

∑
s

∑
t Prst

,

where πrst is the prevalence and Prst is the adult population in stratum s in
census tract t in region r. The prevalence contribution for region r, strata s,
and tract t is

πrst = expit(αr + Xsβ
s
+ Xtβ

t
+ bt),

where bt
iid∼N(0, τ2).

Since we are fitting the model in the Bayesian paradigm, we must specify
prior distributions on all unknown parameters. The main reason we chose a
fixed effects model for the test results was because it is directly determined
by test sensitivity and specificity. This allows us to transparently incorporate
prior information using the validation data on the package insert (26–28)
(as of October 2020) for each test. Each validation study examined test per-
formance on a set of patients with known past infection status, generating
a 2× 2 table of true infection status by the test result. Using Beta(α, β)
distributions, the mean is α/(α+ β), and the variance is scaled by (α+ β).
Commonly, Beta prior distributions are parameterized as hypothetical bino-
mial experiments with α successes of α+ β trials. Here, rather than using a
hypothetical experiment, we can directly use the validation data from the
2× 2 tables on the package inserts. For sensitivity, α is the number of true
positives, and β is the number of false negatives. For specificity, α is the
number of true negatives, and β is the number of false positives. For the
Epitope IgM test, there were no false positives, so β was set to 0.1 since
it must be greater than 0. This sets the mean of each distribution at the
observed value with variability according to the size of the validation study.
Based on this information, we let

S1∼ Beta(109, 13) C1∼ Beta(1066, 4)

S2∼ Beta(96, 39) C2∼ Beta(1074, 16)

S3∼ Beta(9, 11) C3∼ Beta(54, 0.1).

This implies that the means (variances) of the prior distributions are S1,
0.893 (0.0008); C1, 0.996 (0.000003); S2, 0.711 (0.002); C2, 0.985 (0.00001);
S3, 0.450 (0.01); and C3, 0.998 (0.00003). The prior densities are also shown
in Fig. 1. The remaining parameters for the diagnostic testing part of the
model are the covariance parameters. We enforce necessary constraints on
these parameters by specifying independent uniform prior distributions for
each parameter restricted to its allowable range (22). Assuming only positive
dependence between tests, we have

R1
12∼Uniform(0, min(S1, S2)− S1S2)

R0
12∼Uniform(0, min(C1, C2)− C1C2).

For the multilevel regression part of the model, we assume each element
of β is independently normally distributed with zero mean and variance of
nine. We assume τ and σ have independent uniform distributions on (0, 5).
We assume α∼N(logit(0.03), 1) to reflect prior belief that the prevalence of
prior infection is around 3% and puts 95% of the probability between 0.4
and 18.0%.

By putting everything together, we have the full model:

p(S, C, R, D, α, β, b, τ2,α,σ2|T)∝
n∏

i=1

Pr(Ti|S, C, R, Di)× p(R|S, C)× p(S, C)

×
n∏

i=1

Pr(Di|α, β, b)× p(b|τ2)× p(α|α,σ2)

× p(β)p(α)p(τ2)p(σ2),

where T = (T1, . . . , Tn), S = (S1, S2, S3), C = (C1, C2, C3), R = (R1
12, R0

12), D =

(D1, . . . , Dn), β= (βs, βt), α is the vector of region-specific intercepts, and
b is the vector of census tract random effects. To compute the posterior

Kline et al.
Estimating seroprevalence of SARS-CoV-2 in Ohio: A Bayesian multilevel poststratification approach
with multiple diagnostic tests

PNAS | 3 of 7
https://doi.org/10.1073/pnas.2023947118

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://doi.org/10.1073/pnas.2023947118


www.manaraa.com

Fig. 1. Density plots of the prior and posterior distributions for the sensitivity and specificity of each antibody test. (A) Sensitivity of Abbott IgG. (B)
Specificity of Abbott IgG. (C) Sensitivity of Liaison IgG. (D) Specificity of Liaison IgG. (E) Sensitivity of Epitope IgM. (F) Specificity of Epitope IgM.

distribution, the model was fit using a Markov Chain Monte Carlo algorithm
implemented in R (29) using NIMBLE (30). The algorithm was run for 500,000
iterations, discarding the first 250,000 as burn-in and thinning the remain-
ing iterations by keeping every 20th draw. Convergence was assessed by
visually inspecting trace plots. Posterior distributions are summarized by the
posterior mean and 95% highest posterior density credible interval. Code is
available online at https://github.com/sinafala/bayes-prevalence.

Missing Test Results. Some participants did not have results for all three tests
considered, which was primarily due to an insufficient amount of sample

to run the test. There were also 17 participants with an inconclusive result
for the IgM test, which we considered equivalent to not having a result.
However, since our primary interest is in the latent infection status of the
participant, we can still gain some information about this from the test
results that are available. Test result pattern probabilities would still be cal-
culated as above corresponding to the test or pair of tests available for the
participant. For example, if a participant only had the IgG test results, there
would be four patterns of results that would be defined by the probabilities
in Eq. 1. If IgG and IgM tests are observed, the four probabilities would be
computed from products of

4 of 7 | PNAS
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Pr(Tij = tij|Di = di) = [4]

diS
tij
j (1− Sj)

1−tij + (1− di)C
1−tij
j (1− Cj)

tij .

A single available test result would simply lead to a Bernoulli distribution of
whether the result was positive (tij = 1) with the probability calculated as in
Eq. 4 with the appropriate parameters for the observed test.

Sensitivity Analyses. For the analysis of any survey, it is important to account
for the potential of nonresponse bias. We note that our primary analysis is
valid assuming a nonresponse mechanism that is ignorable given stratum.
This is likely a strong assumption, and so, we will consider sensitivity analyses
under several assumptions of potential nonignorable scenarios. To do so,
assume

πrst =π
R
rst(1− pN

rst) +π
N
rstp

N
rst , [5]

where πR
rst and πN

rst are the prevalence rates among the responders and non-
responders, respectively, and pN

rst is the probability of nonresponse. Note
that when ignorability is satisfied, we have πrst =πR

rst =πN
rst , which results

in the estimates from the primary analysis. Due to the survey design, we
can only obtain household nonresponse rates by region, and so, we assume
pN

rst = pN
r for all strata and tracts. In order to carry out a sensitivity analysis,

we will assume the prevalence among nonresponders is

π
N
rst =λπ

R
rst , [6]

where λ is the prevalence ratio in nonresponders compared with respon-
ders and πR

rst is the prevalence estimated from the logistic regression
described above. We will vary λ to explore different scenarios and
assess the sensitivity of our estimates to changes in the prevalence in
nonresponders.

We conduct a second sensitivity analysis to assess the impact of using
informative prior distributions on the test sensitivity parameters. This is
important because of the limited validation data in individuals with con-
firmed infection and questions surrounding the detectability of antibodies
over time, which would impact the sensitivity of the test when used in a pop-
ulation survey such as this. For this analysis, we fit the model as described
above but use Beta(1, 1) prior distributions for S1, S2, and S3. This is a uni-
form distribution on (0, 1) and serves as a less informative prior distribution.
Finally, we conduct a third sensitivity analysis that analyzes the IgG and
IgM tests separately. Again, since antibody presence varies with unknown
time since infection, these estimates reflect the prevalence of individuals
in the postinfection period when IgG or IgM antibodies are detectable
and together, can serve as a reasonable upper bound for prior infection
prevalence.

Results
A total of 727 adults participated in the survey. To be included
in the analysis, participants had to have at least one antibody
test result and have age and sex recorded. Of the 727 partici-
pants, 667 (92%) were included in the analysis. Characteristics of

those included in the analysis are shown in Table 2. We observe
that our included participants tend to be older and female. We
also observe that 23.4% of included participants were from the
northwest region of Ohio.

Our primary goal is to estimate the statewide prevalence of
prior infection with SARS-CoV-2. Based on our model, the pos-
terior mean prevalence is 1.3% with a 95% credible interval of
(0.2, 2.7%). This corresponds to approximately 118,000 nonin-
stitutionalized adults with a 95% credible interval of (22,000,
240,000). As noted in Methods, the prevalence estimates are
based on the latent infection status estimates inferred from the
antibody test results. In Fig. 2, we show the posterior mean prob-
ability of prior infection for all 667 participants included in the
analysis. This illustrates that there were very few participants in
the study who were estimated to actually have prior infection.
In fact, only 17 (2.5%) participants had a posterior probability
of past infection greater than 1%. As expected, those with the
highest estimated probabilities were those for whom there was
agreement across the tests. In general, there was little observed
agreement across the three diagnostic tests. Of the 39 partic-
ipants with at least one positive result, only 3 (7.7%) had a
positive result on more than one test. For parameters that had
informative prior distributions, Fig. 1 and SI Appendix, Fig. S1
show prior and posterior densities to illustrate learning based on
the observed data.

We now turn to the sensitivity analysis that accounted for
potential nonignorable nonresponse. The household-level non-
response rates by region are shown in Table 3. We believe that
nonresponders were most likely to have a higher prevalence of
past infection than responders. In Fig. 3, we show that if we
assume that the prevalence of past infection in nonresponders
was three times that of responders, the upper bound of the 95%
credible interval is at a prevalence of 7%. Thus, across the range
of reasonable scenarios that we considered, we observe rates of
past infection that do not dramatically differ from the estimates
in our primary analysis.

Finally, we consider the sensitivity analysis using less informa-
tive prior distributions for the test sensitivity parameters. In SI
Appendix, Fig. S2, we show posterior mean and credible inter-
vals across prevalence ratios of nonresponders to responders.
For the primary analysis, the posterior mean prevalence is 5.2%
with 95% credible interval of (0.2, 14.8%). In SI Appendix, Figs.
S3 and S4, we show prior and posterior densities and see that
this analysis estimates the test sensitivities to be much lower than
what was suggested by the validation data, leading to higher esti-
mates of prevalence. We show estimates using only the IgG test
results in SI Appendix, Fig. S5 and only the IgM test result in

Table 2. Descriptive statistics and counts of positive antibody test results for participants with at least one antibody test result who
were included in the analysis of prior infection prevalence

All three Abbott IgG and Abbott IgG and Liaison IgG and Abbott Liaison Epitope
Variable Count Proportion tests Liaison IgG Epitope IgM Epitope IgM IgG only IgG only IgM only

Age 18–44 175 0.262 1 0 0 0 1 2 4
Age 45–64 239 0.358 0 1 0 0 0 2 7
Age 65 and over 253 0.379 1 0 0 0 2 7 11
Male 275 0.412 2 0 0 0 1 5 7
Female 392 0.588 0 1 0 0 2 6 15
Central 82 0.123 0 0 0 0 0 1 3
East central 90 0.135 1 1 0 0 1 1 4
Northeast 75 0.112 0 0 0 0 0 1 3
Northwest 156 0.234 0 0 0 0 2 2 4
Southeast 77 0.115 0 0 0 0 0 0 1
Southeast central 56 0.084 0 0 0 0 0 1 3
Southwest 65 0.097 0 0 0 0 0 5 1
West central 66 0.099 1 0 0 0 0 0 3
Total 667 1.000 2 1 0 0 3 11 22
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Fig. 2. Posterior probability of past infection of SARS-CoV-2 for all participants and limited to those participants with a probability of greater than 1%.
(A) Posterior probability of infection. (B) Posterior probability of infection greater than 1%.

SI Appendix, Fig. S6. The posterior mean prevalence is 1.3%
with 95% credible interval of (0.2, 2.6%) using the IgG tests
and is 7.8% with 95% credible interval of (1.0, 18.5%) using the
IgM test. However, all of the estimates in the sensitivity analyses
would be aligned with a similar public health and policy response
as they are not compatible with having reached herd immunity.

Discussion
In this paper, we present an approach to coherently integrate
multiple imperfect diagnostic tests and a model-based analy-
sis. By using this approach, we are able to estimate the past
prevalence of SARS-CoV-2 infection in the state of Ohio in
the United States while appropriately accounting for uncer-
tainty in multiple antibody tests and leveraging the strengths
of a designed survey. Through the Bayesian paradigm, we are
also able to incorporate external information through infor-
mative prior distributions and provide exact inferences for the
prevalence estimates. Our approach provides policy makers with
the best possible estimates of prior infection given the survey
results and our current knowledge of the quality of the antibody
tests.

Through our study, we estimate the magnitude of prior SARS-
CoV-2 infection to be low, roughly 118,000 noninstitutionalized
adults. However, this still reflects a higher burden of infection
than the reported number of cases during the 3-mo period when
we would anticipate being able to detect antibodies (31–35)—
approximately 62,000 cases from mid-April to mid-July 2020.
Our sensitivity analysis for nonresponse shows that even with a
prevalence ratio of three between nonresponders and respon-
ders, the upper bound of the credible interval is a prevalence
of about 7%. Our sensitivity analysis for test sensitivity shows
slightly increased estimates of prevalence but with consider-
able uncertainty. Similar results are also observed in sensitivity
analyses that separately consider each type of antibody. Thus,
even in hypothetical scenarios with large selective response and
low estimated test sensitivity, we conclude that the majority of
Ohio adults still remain susceptible to SARS-CoV-2 infection.
This implies that the state must remain vigilant and continue
to deploy nonpharmaceutical interventions like masks and social
distancing to limit the spread of SARS-CoV-2.

Methodologically, we developed a coherent statistical frame-
work for analyzing seroprevalence surveys with multiple imper-
fect diagnostic tests. Typically, one might rely on a single test or
the creation of deterministic rules that combine test results to
assess positive cases. In contrast, we utilized existing method-
ology for combining the results of multiple diagnostic tests

to fully incorporate information on infection status from each
test. We then connected the estimated infection status to a
multilevel regression and poststratification approach for gener-
ating population-based estimates. Through our fully Bayesian,
model-based analysis, we are able to appropriately propagate
uncertainty and provide exact inferences while synthesizing the
information from each type of test administered. Our approach
allows us to make full use of the data collected by the survey while
also accounting for its quality. Future methodological challenges
remain as test characteristics are likely a function of time since
infection, which is unknown and not explicitly considered in our
model.

Our study has significant strengths: a representative random
sample, employing multiple diagnostic tests, and conducting a
fully Bayesian analysis. There are also limitations. The survey
was designed to estimate SARS-CoV-2 infection prevalence at
the level of the whole state and was not designed for estima-
tion within any subgroups or smaller geographies. A future study
should consider oversampling high-risk subgroups or regions to
enable inference specific to those important populations. Non-
response was a major issue that was addressed in the field using
all available resources. We do not have detailed information on
nonresponders that could have been incorporated into a more
sophisticated model for missing data. However, based on our
sensitivity analysis, we do not believe the substantive policy impli-
cations of the study would change based on a more complicated
missing data model. Finally, the informative prior distributions
for antibody test characteristics are based on validation data pre-
sented in the test inserts—we are unable to verify the rigor and
quality of those validation studies.

In conclusion, we have developed a statistical analysis frame-
work for analyzing seroprevalence survey data with few positive
cases and results from multiple imperfect diagnostic tests. Since

Table 3. Household-level nonresponse rates by region

Region Rate

Central 0.783
East central 0.841
Northeast 0.840
Northwest 0.832
Southeast 0.752
Southeast central 0.790
Southwest 0.810
West central 0.818

6 of 7 | PNAS
https://doi.org/10.1073/pnas.2023947118

Kline et al.
Estimating seroprevalence of SARS-CoV-2 in Ohio: A Bayesian multilevel poststratification approach

with multiple diagnostic tests

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023947118/-/DCSupplemental
https://doi.org/10.1073/pnas.2023947118


www.manaraa.com

SO
CI

A
L

SC
IE

N
CE

S
ST

A
TI

ST
IC

S

Fig. 3. Posterior mean and 95% highest posterior density credible intervals for the prevalence of past infection under several scenarios of nonignorable
nonresponse. The prevalence ratio is λ in Eq. 6.

estimates of prior and current prevalence are relevant to policy,
seroprevalence studies of SARS-CoV-2 are becoming increas-
ingly important and more frequently conducted. Our method-
ological approach is a critical component to ensuring that serol-
ogy data are analyzed in a way that is consistent both with the
design of the survey and with the inherent limitations in the
accuracy of antibody tests. This enables policy makers to have
access to the best available estimates that also fully and honestly
account for all of the sources of uncertainty that contribute to
the quantification of SARS-CoV-2 infection.

Data Availability. Due to the nature of this research, participants of this
study did not agree for their data to be shared publicly, so supporting
data are not publicly available. However, deidentified data is available upon
reasonable request to the authors. Code is publicly available in GitHub at
https://github.com/sinafala/bayes-prevalence.
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